Some Remarks on Perturbation Classes of Semi-Fredholm and Fredholm Operators

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Remarks on Perturbation Classes of Semi-Fredholm and Fredholm Operators

We show the existence of Banach spaces X, Y such that the set of strictly singular operators ᏿(X,Y) (resp., the set of strictly cosingular operators Ꮿ᏿(X,Y)) would be strictly included in F + (X,Y) (resp., F − (X,Y)) for the nonempty class of closed densely defined upper semi-Fredholm operators Φ + (X,Y) (resp., for the nonempty class of closed densely defined lower semi-Fredholm operators Φ − ...

متن کامل

Perturbation Results on Semi-Fredholm Operators and Applications

We give some results concerning stability in the Fredholm operators and Browder operators set, via the concept of measure of noncompactness. Moreover, we prove some localization results on the essential spectra of bounded operators on Banach space. As application, we describe the essential spectra of weighted shift operators. Finally, we describe the spectra of polynomially compact operators, a...

متن کامل

Perturbation and Coperturbation Functions Characterising Semi-fredholm-type Operators

Certain norm-related functions have been considered in order to obtain characterisations and perturbation results for various classes of semi-Fredholm-type operators. In the §2, by means of what we have called a perturbation function, we present a general approach to the question of obtaining characterisations and perturbation theorems for F + and strictly singular operators. To this end, for e...

متن کامل

Notes on Fredholm operators

(2) If K ∈ B(X) is compact, then for all λ ∈ C \ {0}, K − λ1 is Fredholm with index zero. (3) The shift operator S± ∈ B(`p) for 1 ≤ p ≤ ∞ defined by (S±x)n = xn±1 is Fredholm with index ±1. (4) If X,Y are finite dimensional and T ∈ B(X,Y ), then by the Rank-Nullity Theorem, ind(T ) = dim(X)− dim(Y ). Lemma 3. Suppose E,F ⊆ X are closed subspaces with F finite dimensional. (1) The subspace E + F...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Mathematics and Mathematical Sciences

سال: 2007

ISSN: 0161-1712,1687-0425

DOI: 10.1155/2007/26254